Skip to content. | Skip to navigation

You are here: Home Our Resources Literature Soil nitrogen cycle p...

Soil nitrogen cycle processes in urban riparian zones

Author: Groffman, Peter M.; Boulware, Natalie J.; Zipperer, Wayne C.; [and others]
Date: 2002
Periodical: Environmental Science & Technology
Link: http://www.ecology.uga.edu/news/gradsymposium/groffman/Groffman et al 2002 (ES&T).pdf
Abstract: Riparian zones have been found to function as 'sinks' for nitrate (NO3-), the most common groundwater pollutant in the U. S., in many areas. The vast majority of riparian research, however, has focused on agricultural watersheds. There has been little analysis of riparian zones in urban watersheds, despite the fact that urban areas are important sources of NO3- to nitrogen (N)-sensitive coastal waters in many locations. In this study, we measured stream incision, water table depths, and pools, production (mineralization, nitrification), and consumption (denitrification) of NO3- in urban soils. Samples were taken from soil profiles (0-100 cm) of three forested urban and suburban zones and one forested reference riparian zone in the Baltimore, Maryland metropolitan area. Our objectives were to determine (1) if stream incision associated with urbanization results in lower riparian water tables, and (2) if pools, production, and consumption of NO3- vary systematically with stream incision and riparian water table levels. Two of the three urban and suburban streams were more incised and all three had lower water tables in their riparian zones than the forested reference stream. Urban and suburban riparian zones had higher NO3- pools and nitrification rates than the forested reference riparian zone, which was likely due to more aerobic soil profiles, lower levels of available soil carbon, and greaterNenrichment in the urban and suburban sites. At all sites, denitrification potential decreased markedly with depth in the soil profile. Lower water tables in the urban and suburban riparian zones thus inhibit interaction of groundwater-borne NO3- with near surface soils that have the highest denitrification potential. These results suggest that urban hydrologic factors can increase the production and reduce the consumption of NO3- in riparian zones, reducing their ability to function as sinks for NO3- in the landscape.


Personal tools

powered by Southern Regional Extension Forestry