Skip to content. | Skip to navigation

You are here: Home Our Resources Literature Measuring moisture dy...

Measuring moisture dynamics to predict fire severity in longleaf pine forests

Author: Ferguson, S.A.; Ruthford, J.E.; McKay, S.J. [and others]
Date: 2002
Periodical: International Journal of Wildland Fire
Link: http://www.fs.fed.us/pnw/pubs/journals/IFWF_moss_moisture_ferguson.pdf
Abstract: To understand the combustion limit of biomass fuels in a longleaf pine (Pinus palustris) forest, an experiment was conducted to monitor the moisture content of potentially flammable forest floor materials (litter and duff) at Eglin Air Force Base in the Florida Panhandle. While longleaf pine forests are fire dependent ecosystems, a long history of fire exclusion has allowed large amounts of pine litter and duff to accumulate. Reintroducing fire to remove excess fuel without killing the longleaf pine trees requires care to burn under litter and duff moisture conditions that alternately allow fire to carry while preventing root exposure or stem girdle. The study site was divided into four blocks that were burned under litter and duff moisture conditions of wet, moist, dry, and very dry. Throughout the 4-month experiment, portable weather stations continuously collected meteorological data, which included continuous measurements of water content in the forest floor material from in situ, time-domain reflectometers. In addition, volumetric moisture samples were collected almost weekly, and pre-burn fuel load and subsequent consumption were measured for each burn. Meteorological variables from the weather stations compared with trends in fuel moisture showed the influence of relative humidity and precipitation on the drying and wetting rates of the litter and duff. Fuel moisture conditions showed significant influence on patterns of fuel consumption and could lead to an understanding of processes that govern longleaf pine mortality.


Personal tools

powered by Southern Regional Extension Forestry