NATIONAL WATERSHED AND STORMWATER CONFERENCE **2019**

APRIL 29 - MAY 2, 2019 Historic Charleston, South Carolina

#CWPConference19

Speakers

Neely Law, PhD

Director of Education and Training with the Center for Watershed Protection

Trisha Moore, PhD

Assistant Professor, Department of Biological and Agricultural Engineering at Kansas State University

Dane Wudel, P.E.

Water Resources Engineer for MARS-EOR

Charles Barden

Professor, Department of Horticulture and Natural Resources at Kansas State University

Urban Trees & Stormwater Management Workshop AGENDA

- 1:00 Welcome and Introductions (Kuehler, Law)
- 1:10 Unraveling the influence of trees on urban stormwater quality and quantity: Digging into the data (Moore)
- 1:45 Making Urban Trees Count: Taking credit for trees in stormwater designs
- 2:20 BREAK
- 2:35 Integrating a canopy interception spreadsheet tool with WinSLAMM for site stormwater design: potential water quantity and quality benefits (Wudel)
- 3:10 Filling a Need: Developing training for stormwater managers on the influence of trees on urban stormwater (Barden)
- 3:45 Panel Discussion, Q&A (Kuehler, Law)

Resources and handouts provided on flashdrive

MAKING URBAN TREES COUNT: TAKING CREDIT FOR TREES IN STORMWATER DESIGNS

Center for Watershed Protection

Neely L. Law, PhD, Karen Cappiella, Bill Stack, P.E., Deb Caraco, P.E.

Justin Hynicka

OUTLINE

- Current application of trees for stormwater management, Q&A
- Urban Forestry Stormwater Calculator
- Application of calculator (see handout or view calculator)
- Discussion of results

The Urban Tree Canopy

Review of Existing Tree Stormwater Credits

Community	Type of Credit	Credit for a Deciduous Tree
Sacramento, CA	IC	100ft ² – 200 ft ²
Seattle, WA	IC	$20 ft^2 - 50 ft^2$
Pine Lake, GA	Volume	<12" DBH: 10 gallons/in; >12" DBH: 20 gallons/in
Washington, DC	Volume	10ft ³ (20ft ³ for preservation)
Vermont	Volume	5ft ³
Minnesota	Volume and P load	Depends on soil volume and other factors
Chesapeake Bay Program*	N, P and S load	Relative reduction % for area tree planted

Source: Stone Environmental, 2014, *Law and Hanson, 2016

"Making Urban Trees Count": A stormwater credit framework for urban tree planting

- To provide science-based credit to encourage use of trees to meet stormwater management requirements
- Elements for consideration:
 - Location
 - Regulatory context
 - Stormwater Credit Currency

National Urban and Community Forestry Challenge Cost-Share Grant Program

Urban Forestry Stormwater Calculator Overview

- i-Tree Forecast
- Water balance model
- 11 Climate zones
- 31 locations
- 2 Reference land covers
- 4 Hydrologic Soil Groups
- 5 Tree Types

Annual TMDL Credit Calculation Inputs

User Input

- Climate zone
- Soil Type

NATIONAL WATERSHED AND STORMWATER CONFERENCE

 Land Cover with default land use concentrations

- Qualifying conditions
- Tree Type (5)
- Number of trees planted

incorpora credit reli	ted into the TMDL planning and crediting pro asse schedule to incentivize tree care and en	ocess. Results reflect the annual pollutant reduction sure the tree reaches maturity.	benefits provided by trees at maturity. A	dopters of this credit framework may opt for a
createren		sare the tree reaches matarity.		
STEP 1	Select Climate Zone:			
	South			
STEP 2	Select Soil Type:			
	HSG C			
STEP 3	Select Land Cover:	Default TN Concentration (mg/L)	Default TP Concentration (mg/L)	Default TSS Concentration (mg/L)
	Pervious	· 1.45	0.25	140
		User-Defined TN Concentration (mg/L)	User-Defined TP Concentration (mg/L)	User-Defined TSS Concentration (mg/L)
	Enter User-Defined Pollutant Concent	rations		
STEP 4	(Optional) >>			
STEP 5	Have all the qualifying conditions liste	d below been met?		
	Yes			
	Qualifying conditions:			
	Maintenance plan is in place	horist ushes forest Awas consulted on selection of some	ordete encodes, site economical and siting to a	revide sufficient cell volume
	Qualified professional (e.g., licensed and	s the planting site required only when socking credit for the	opriate species, site preparation and siting to p	rovide sufficient soli volume
	cear inter pickup program is present for	The planting site (required only when seeking credit for th	ees planted over impervious covery	
STEP 6	Salart Tree Tune:			
SILFO	Broadleaf Decidium (BBio)			
	bioducar becidadas mediam (bbin)			
STEP 7	Enter Number of Trees Planted:			
		100		
	RESULTS:			
	TN Reduction (lbs/yr)	TP Reduction (lbs/γr)	 TSS Reduction (lbs/yr) 	 Runoff Reduction (gallons)
	2.9	0.49	267	220.204

Resources and handouts provided

- CWP Urban Forestry Stormwater Calculator Tool
- Calculator Tool Documentation
- Summary of results from example scenarios
- Characteristics of representative trees used in scenarios
- Comparison of models used to estimate hydrologic benefits of trees

Let's take a look

- 2 Scenarios
 - Urban street trees (100 broadleaf medium)
 - Urban woodlot (50 broadleaf large, 25 broadleaf medium, 25 broadleaf small)
- 4 Climate Regions
 - Coastal Plain, South, Pacific NW, Midwest

Making Urban Trees Count: A Project to Demonstrate the Role of Urban Trees in Achieving Regulatory Compliance for Clean Water

Center for Watershed Protection December 2017

CREDITING FRAMEWORK PRODUCT #4: Pollutant Load Reduction Credit Tool

Copyright © 2017 Center for Watershed Protection, Inc. Material may be quoted provided credit is given

This project was made possible through a National Urban and Community Forestry Advisory Council grant from the USDA Forest Service

USDA is an equal opportunity provider, employer, and lender

Suggested citation:

Center for Watershed Protection. 2017. *Pollutant Load Reduction Credit Tool*. Crediting Framework Product #4 for the project Making Urban Trees Count: A Project to Demonstrate the Role of Urban Trees in Achieving Regulatory Compliance for Clean Water. Center for Watershed Protection, Ellicott City, MD.

NATIONAL WATERSHED AND STORMWATER CONFERENCE

Results

Scenario A (Street Trees) Scenario B (Woodlot)

Let's Wrap It Up

- Evaluate existing 'one size fits all' credit
- Tool may provide guidance on variable credit
- Effect of local climate, tree species and land cover
- Significance of soil environment and effect on ET and Runoff
- Existing need to better understand pollutant dynamics and urban tree canopy
- Additional calculators developed for 'event' or performance-based credit also available at <u>www.cwp.org</u>
- Learn more about Trees & Stormwater on Wednesday, Session 4

