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The US Forest Service and other land-management agencies seek better tools for anticipating future
expenditures for wildfire suppression. We developed regression models for forecasting US Forest Service
suppression spending at 1-, 2-, and 3-year lead times. We compared these models to another readily
available forecast model, the 10-year moving average model, and found that the regression models
do a better job of forecasting the expenditures for all three time horizons. When evaluated against the
historical data, our models were particularly better at forecasting the more recent years (2000 –2007)
than the less sophisticated models. The regression models also allowed us to generate, using simulation
methods, forecast statistics such as the means, medians, and confidence intervals of costs. These
additional statistics provide policymakers, wildfire managers, and planners more information than a
single forecast value.
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U ncertainty regarding future wild-
fire suppression expenditures pre-
sents an ongoing challenge to poli-

cymakers and agency administrators within
the US Forest Service and other land-man-
agement agencies. As part of the federal bud-
getary process, the land-management agen-
cies must provide estimates of the funding
needed to suppress wildfires 3 years before
the season begins. This requested amount is
based, in part, on a 10-year moving average
of historical suppression costs. For 8 of the
last 10 years, however, the funds requested
by the US Forest Service have fallen short of
the amount needed for wildfire suppression.
Part of the rise in suppression costs can be
explained by increases in area burned, which
are linked to climate shifts (e.g., Swetnam
and Betancourt 1990), and drought patterns

that favor greater wildfire activity (e.g.,
Westerling et al. 2003, Siebold and Veblen
2006).

Because federal agencies are not allowed
to spend more money than they have been
appropriated, shortfalls in suppression ex-
penditures must be made up by transferring
money from other US Forest Service pro-
grams or by requesting additional funds
from Congress. Transfers from other US
Forest Service programs, even if these funds
are eventually restored by Congress, have
been shown to interfere with overall agency
operations (US General Accounting Office
2004). This makes the estimate of future
suppression spending a critical part of both
wildfire management and overall agency
planning.

To monitor possible budget shortfalls,

Gebert and Schuster (1999) developed with-
in-season expenditure forecasts, which are
now used by both the US Forest Service and
the Department of Interior to monitor
spending during the height of the fire season
(June through September). In addition,
Prestemon et al. (2008) developed forecasts
for 1 year ahead using climate, drought, and
trend variables to forecast suppression ex-
penditures for the current fiscal year (FY).
Abt et al. (2008) developed autoregressive
time series regressions to forecast suppres-
sion costs 2 and 3 years in advance.

This article reports on improved 1-, 2-
and 3-year-ahead regression model forecasts
of US Forest Service wildfire suppression ex-
penditures. We describe the improvements
over models initially reported by Abt et al.
2008 and Prestemon et al. 2008 and de-
scribe their forecast accuracy. The regression
models are also compared with the 10-year
moving average forecast model. In an appli-
cation of the latest model developments, we
report forecasted expenditures for FY 2008,
2009, and 2010, and we compare the 2008
forecast with actual 2008 expenditures.

Developing Statistical
Expenditure Forecast Models

There are many types of models that
could be used to develop a statistical forecast
of wildfire suppression expenditures, includ-
ing those based on averages of historical
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costs, pure autoregressive models of histori-
cal costs, and more complex regression mod-
els that may include historical costs but also
external information. The first approach is
the simplest, and one example is the 10-year
moving average of the most recent observed
costs. This model gives each year an equal
weight when making forecasts and implicitly
assumes that expected costs change slowly.
In addition, relatively simple are autoregres-
sive models, which are similar to moving av-
erage models except that they allow previous
years’ costs to have differing weights. These
two approaches require no data other than
the time series of costs and may have an
added benefit of relative transparency, but
they may ignore potentially useful external
information. The more complex regression
models take advantage of this additional ex-
ternal information.

For this analysis, the cost of fire sup-
pression is defined as the group of expendi-
tures that fall under the US Forest Service
budget category of Wildland Fire Suppres-
sion. This includes money expended to sup-
press wildland fires, to monitor naturally oc-
curring fires that are being allowed to burn
for resource benefits, and emergency reha-
bilitation of burned areas. This definition
does not include physical or economic dam-
ages to trees, forests, structures, or the im-
pacts on the local economy from either the
wildfire or suppression operations. In this
article, we use the terms suppression cost
and suppression expenditure interchange-
ably. Our expenditure data are from a data-
base of US Forest Service fire management
expenditures first developed by Schuster et
al. (1997) and maintained by the Rocky
Mountain Research Station. The data,
which extend for 31 years (1977–2007), are
annual by US Federal FY, which begins Oc-
tober 1 and ends September 30. For exam-
ple, FY 2007 began Oct. 1, 2006 and ended
Sept. 30, 2007.

Suppression expenditures are influ-
enced by a number of factors. Anything that
affects the number, size, and intensity of
wildfires will affect the costs of suppression.
Our regressions include ocean temperatures
and ocean pressure indices that have been
shown to influence fire in many parts of the
United States. Sea surface temperatures and
atmospheric pressure affect circulation
patterns, including frontal systems and
thunderstorms, thus affecting fire-related
weather and hazardous forest fuels by alter-
ing lightning, precipitation, temperature,
and wind. These include the El Niño-

Southern Oscillation (Swetnam and Betan-
court 1990, Barnett and Brenner 1992,
McKenzie et al. 2004, Schoennagel et al.
2005, Kitzberger et al. 2007), the Pacific
Decadal Oscillation (McKenzie et al. 2004,
Schoennagel et al. 2005, Collins et al. 2006,
Kitzberger et al. 2007), the Arctic Oscilla-
tion, the Southern Oscillation Index (Si-
mard et al. 1985, Swetnam and Betancourt
1990, Brenner 1991), and the North Atlan-
tic Oscillation (Collins et al. 2006,
Kitzberger et al. 2007).

Although larger climatic patterns are
represented by the ocean temperature and
pressure measures, we also incorporate local-
ized measures of drought to capture the local
effects of changes in precipitation and tem-
perature on fuel conditions. Drought indi-
ces have been shown to explain observed fire
activity (Westerling 2003, Crimmins and
Comrie 2004, Gedalof et al. 2005, Collins et
al. 2006).

We also included a trend variable in
each of the regressions to capture systematic
changes in capital and labor prices and re-
gional populations. Early tests of the energy
price index did not show any correlation
with suppression costs. The expenditures
made in previous years were also included in
the regressions to capture persistent spend-
ing patterns that may be related to manage-
ment practices and cost structures. Insignif-
icant variables (trend, drought, climate, and
previous expenditures) were dropped from
the forecasting models.

Estimating Statistical
Expenditure Forecast Models

We developed three different multi-
equation models, with the equations within
each model corresponding to different US
Forest Service administrative units that are
believed to have different wildfire systems or
expenditure patterns. The 1-year-ahead
forecast model divided the United States
into four geographic regions and a catchall
category called Rest of the Forest Service,
which encompassed suppression-related ex-
penditures made by national offices and re-
search stations. For the 1-year-ahead model,
our tests found that combining the six west-
ern regions into a single equation (Western
Aggregate, including the Pacific Southwest,
Pacific Northwest, Intermountain, North-
ern, Rocky Mountain, and Southwest re-
gions) improved the forecasts. In the models
for 2 and 3 years ahead, each of the nine
geographic regions (Alaska, Southern, East-

ern, Rocky Mountain, Pacific Southwest,
Pacific Northwest, Northern, Southwest,
and Intermountain) and the Rest of the For-
est Service are tracked by 10 separate equa-
tions.

The modeling process included several
steps. First, each of the regional or regional-
aggregate equations within a model was
specified separately to identify the variables
that do the best job of explaining costs. Sec-
ond, the regional equations were estimated
together to account for any correlations in
costs beyond those explained by the vari-
ables included in each regional equation.
Third, a predicted value was developed for
every year (FY 1977–2007), including the
forecast years (FY 2008–2010). Fourth, to
make an agencywide forecast of suppression
costs for future years, we forecasted costs for
each region or regional aggregate and then
added those costs together to arrive at a total
predicted value for the year. Fifth, predic-
tion errors for all the equations in each
model were used to generate confidence in-
tervals, as well as mean and median forecast
values around the predicted values of the
costs of future seasons. Each of these steps is
further described in the following sections.

Step 1. All 25 equations were initially
specified with the following variables: lagged
suppression costs (one to seven years back),
lagged monthly Palmer Drought Severity
Index (the Palmer X series for the 1-year-
ahead model and the Palmer H series for the
2- and 3-year-ahead models) (National Oce-
anic and Atmospheric Administration
[NOAA] 2007a); lagged ocean temperatures
and pressures indices (including the North
Atlantic Oscillation [NOAA 2007b]), the
Pacific Decadal Oscillation (Mantua and
Hare 2007), Niño-3 sea surface temperature
anomaly (NOAA 2007c), the Southern Os-
cillation Index (NOAA 2007d), and the
Arctic Oscillation (NOAA 2007e); and a
trend variable. Forecasts of the El Niño-
Southern Oscillation (made as forecasts of
the Niño-3 sea surface temperature anom-
aly) were only included in the 1-year-ahead
model because forecasts are not available for
more than 1 year ahead (Wang 2006,
NOAA 2007f). Interactions between the cli-
mate measures are common, and further dis-
cussion of these interactions can be found in
a study by Prestemon et al. (2008).

We were unable to correct anomalies in
the suppression cost data that resulted from
accounting adjustments. Thus, we included
dummy variables, equal to one for the year
and the region in question and zero other-
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wise, to isolate the effect of these accounting
anomalies.

Another adjustment we made was in
recognition of work by Calkin et al. (2005)
and Westerling et al. (2006), which identi-
fied a significant shift in wildfire activity in
the western United States that occurred in
the mid-1980s. We tested for a change be-
tween pre- and post-1986 and found signif-
icance in one of the 2-year-ahead models
(California) and in four of the 3-year-ahead
models (California, Eastern, Alaska, and
Rest of the Forest Service), so an additional
dummy variable measuring this shift was in-
cluded in those regions’ equations.

Step 2. In selecting a final set of vari-
ables to include in the forecast equations,
variables different from zero at weaker than
20% significance were dropped from the ini-
tial full specification. Once the independent
variables were determined for each regional
equation in a model, the equations were es-
timated together (5 equations in the 1-year-
ahead model, 10 equations in the 2-year-
ahead model, and 10 equations in the
3-year-ahead model) as seemingly unrelated
regressions. This estimation process ac-
counts for correlations of random errors in
costs across the equations of a model and
thereby reduces parameter estimation un-
certainties.

Step 3. Forecast values for each FY
from 1977 to 2007 were produced by a jack-
knife procedure using the 1-, 2-, and 3-year-
ahead forecast models. The jackknife proce-
dure estimates parameters by leaving out 1
year, and then uses these parameter esti-
mates to forecast the cost for the year that
was left out. For example, to produce the
jackknife forecast for the 1-year-ahead
model for, say, FY 1999 for the Western Ag-
gregate, we used data for all years except
1999 to estimate the parameters of the
1-year-ahead model. We then used these pa-
rameter estimates and the actual 1999 values
of the independent variables to forecast the
1999 suppression cost. We repeated this
process for all years from FY 1977 to 2007.

Step 4. The forecasts from each of the
equations were added together to produce a
single agencywide forecast of suppression
costs for each year from FY 1977 to 2007.
All forecasts and actual expenditures are re-
ported in inflation-adjusted (2004) dollars
(US Department of Commerce 2007).

Step 5. To quantify the uncertainty of
the FY 2008, 2009, and 2010 suppression
costs, we used the uncertainty contained in
the equations of the individual regressions in

a simulation to generate a probability distri-
bution of possible suppression costs. Prest-
emon et al. (2008) provide additional details
on the generation of this distribution. The
simulations produce estimates of the median
and mean forecast values, as well as the 90
and 95% confidence intervals for the 1-, 2-,
and 3-year-ahead forecasts.

Regression and Forecast Results
and Model Comparisons

The regression results for the regional
equations for the three forecast horizons in-

cluded different combinations of indepen-
dent variables. Sea surface temperature and
pressure indices were significant in all but 3
of the 25 equations. Drought was significant
in 15 of the equations, and lagged costs were
significant in only 3 equations. Six of the
equations included a dummy variable to ac-
count for known accounting adjustments.
Only four of the equations did not include a
trend variable.

The jackknife forecast values for the re-
gression models are shown in Figures 1, 2,
and 3 for the 1-, 2- and 3-year-ahead mod-

Figure 1. Comparison of actual expenditures to 1-year-ahead forecasts from the regression
model and the 10-year moving average model for FY 1987–2007.

Table 1. Forecasts of wildfire suppression expenditures for FY 2008, 2009, and 2010
made in November of 2007 using the regression models.

Forecasted expenditures by FY
(millions of 2004 dollars)

2008 2009 2010

Point forecasta 1,007 1,044 895
Mean forecastb 1,027 1,387 1,316
Median forecastb 1,019 1,284 1,162
95% confidence intervalc

Lower bound 786 618 478
Upper bound 1,321 2,772 3,027

90% confidence intervalc

Lower bound 820 692 550
Upper bound 1,261 2,431 2,588

a Point forecasts are made by multiplying the coefficient estimates by the right-hand-side variables.
b Mean and median forecasts are the mean and median of the simulated forecasts.
c Confidence intervals are the statistical probability that the actual expenditures will fall between the lower and upper bounds.
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els, respectively. These figures also show the
actual expenditures made each year and the
10-year moving average of costs for that ho-
rizon. The start date for each of these figures
corresponds with the 1st year the corre-
sponding 10-year moving average of costs is
available.

The regression forecasts of expenditures
for FY 2008, 2009, and 2010 are shown in
Table 1. This table also includes the means,
medians, and 90 and 95% confidence inter-
vals derived from the distributions devel-
oped through the simulations. As the figures
illustrate, the regression forecasts follow the
actual expenditures better than the 10-year
moving average of costs. The confidence in-
tervals around the mean values of the fore-
casts expand as the forecast horizon in-
creases; in other words, there is a 95%
confidence interval of $2,549 million ($478
to 3,027 million) for the 3-year-ahead re-
gression model, but an interval of only
$535 million for the 1-year-ahead regression
model. These results hold for all time hori-
zons and for both the regression and the 10-
year moving average models (Table 1).

In fall of 2007, the forecast of FY 2008
suppression expenditures from the 1-year-
ahead model was $1.151 billion (in 2008
dollars). The actual suppression expendi-
tures for FY 2008, which compare with the
forecasts discussed in this article, were
$1.163 billion. Thus, our forecast of FY
2008 suppression expenditures was lower
than actual by $12 million. [1]

The forecast distribution as described
previously for one set of forecasts provides
some information about the relative accu-
racy of the different forecast models. How-
ever, to more precisely compare the accuracy
of the different models, we need to compare
this accuracy across many years. To do this,
we calculated the root mean square error
(RMSE) of the forecasts from the regression
models and the 10-year moving average
model. To calculate the error for each year,
we subtracted the 10-year moving average
forecast and the 1-, 2- and 3-year-ahead
forecasts for each forecasted year from the
actual expenditures for that year. The differ-
ences are squared and summed, divided by
the number of observations, and the square
root is computed to provide the RMSE.

Results show that the 1-year-ahead
model produces a forecast with an error rate
that is 60% smaller than that derived from
the 10-year moving average of costs (Table
2; Figure 4). The RMSE for the 1-year-
ahead regression model is $145 million,

compared with $369 million for the 10-year
moving average. The 2- and 3-year-ahead
forecast RMSEs are 40 and 35% smaller

than the 10-year moving average, respec-
tively.

We also used the RMSE to illustrate

Figure 2. Comparison of actual expenditures to 2-year-ahead forecasts from the regression
model and the 10-year moving average model for FY 1988–2007.

Figure 3. Comparison of actual expenditures to 3-year-ahead forecasts from the regression
model and the 10-year moving average for FY 1989–2007.
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how the 10-year moving average forecast has
deteriorated over time. This was done by cal-
culating the average size of forecast errors,
measured by the RMSE, as years progress
(Figure 4). The values in Figure 4 are the
RMSEs for the 1-year-ahead model calcu-
lated between the year indicated in the hor-
izontal axis of the figure and 2007, starting
in 1987 (the 1st year both forecasts are avail-
able) and ending in 2002. For example, the
year 1997 on the horizontal axis represents
the RMSE for FY 1997–2007. The regres-
sion forecast RMSE has a stable forecast er-
ror, around $140 million, for all subsets of
the period 1987–2007. The 10-year moving
average forecast, however, displays an in-
creasing forecast error, especially since 1999,
with the error ranging from the low of $369
million for the FY 1987–2007 period to a
high of $524 million for the FY 2000–2007
period.

Conclusions
Suppression costs and the methods by

which suppression operations are funded
have placed unusual pressures on the bud-
gets for fire management and other opera-
tions of land-managing agencies in the
United States. To improve US Forest Ser-
vice managers’ abilities to respond to the un-
certainties of future fire seasons, we devel-
oped multiequation regression models that
can forecast costs with greater accuracy than
simple moving average models. These re-
gression models are significantly more accu-
rate at all forecast time horizons that we ex-
amined. The recent increase in error
associated with using the 10-year moving av-
erage of costs shows a weakness of this
model, which is the slow response to changes
in wildfire conditions. The more sophisti-
cated regression models reported here are
better able to capture changes in these con-
ditions because more information regarding
physical, biological, and managerial envi-
ronments can be used.

In constrast, although these models
produce more accurate forecasts, the 10-year
moving average model has the advantage of
providing year-to-year forecast stability us-
ing a familiar, transparent, and easy-to-ex-
plain method. Use of the regression models
would produce a more volatile guide for
agency managers when developing budgets.
Although these forecasts would be more ac-
curate, it is not clear how either agencies or
Congress would accommodate more volatile
budget requests under the current appropri-
ations system. Changes in how suppression
activities are funded, variations of which
have been proposed in recent years, could be
one way to accommodate such variability in
requests.

The costs of fire suppression are increas-
ing over time, and we have developed fore-
cast models that attempt to account for
many of the factors leading to these in-
creased costs. Future research could examine
more spatially explicit models, which would
allow inclusion of explicit hazardous forest
fuel, population, development, and local
weather effects. More accurate statistical
models, such as the ones developed here, can
also serve as early warnings for likely future
budget shortfalls, emphasizing the need for
official mechanisms to accommodate vari-
able funding in the future.

Endnotes
[1] In addition to our forecast, an estimate of

additional wildfire management expenses
was made by Fire and Aviation Management,
US Forest Service ($0.296 billion), which re-
sulted in a total forecast for FY 2008 of
$1.447 billion. Total US Forest Service wild-
fire management expenditures for 2008 (sup-
pression plus additional) were $1.459 bil-
lion.
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