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Abstract

This article examines patterns of rural land development and density using spatial econometric models with the application

of Geographical Information System (GIS). The cluster patterns of both development and high-density development indicate

that the spatially continuous expansions of development and high-density development exist in relatively remote rural areas.

The results also revealed that a closer distance to roads, a closer distance to cities, greater access to streams and rivers, higher

elevations, and greater proportions of flat area are valued highly in rural land development.
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1 The Census Bureau classifies urban area as a central city and the

surrounding densely settled territory that together have a population

of 50,000 or more and a population density generally exceeding

1,000 people per square mile. All others are considered rural. OMB
The population of non-metropolitan counties grew

by 5.3 million, or 10.3% in the 1990s, compared

with an increase of just 1.3 million, or 2.7% in the

1980s. Net migration also shifted from an average

annual outmovement of 269,000 in the 1980s to an

average inmovement of 348,000 in the 1990s

(Economic Research Service, 2004). The non-metro-

politan population growth has slowed down recently

but there are still rapidly growing counties with

amenities that attract retired people. The Blue Ridge

Mountains area is among the fastest growing rural

areas in the country and Macon County, North

Carolina, situated at the southern end of the Blue

Ridge Mountains, is an area specifically experiencing

this rapid development.
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Macon County is classified as rural by the Census

Bureau and bnon-metroQ by White House’s Office of

Management and Budget (OMB).1 The county grew

from 20,178 people to 29,811 in the 1990s, an

increase of nearly 48%. At the same time, the number

of housing units increased from 13,358 to 20,746, a

gain of 55%. The higher increase of housing units

relative to population growth reflects the impact of

recreational second home developments in the moun-

tains. For instance, in 2002, 45% of all new residences
ics 7 (2005) 732–744
classifies a metro area as one city with 50,000 or more inhabitants or

an urbanized area (defined by the Census Bureau) with at least

50,000 inhabitants and a total metropolitan statistical area (MSA)

population of at least 100,000 (75,000 in New England). Any area

not included in an MSA is considered bnon-metroQ.
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built in the county were second homes. An increasing

number of rural homeowners, interfacing with the

unprecedented growth of the metropolitan Atlanta

area’s northern suburbs (e.g., the population of

Cherokee County, Georgia grew 174% between

1980 and 2000), has expanded second home com-

munities of the county at a rapid pace.

The rapid growth in Macon County has given rise

to concerns over declining environmental quality.

Scientific monitoring revealed that the water quality

in some streams has declined significantly during the

past two decades (N.C. Division of Water Quality,

2002). This rapid growth puts pressure on such public

services as sewage treatment and overall water

quality. Despite the common recognition of the

consequences of the county’s rapid growth, it has

had difficulties adopting a land use plan. The county

needs a systematic study to help decision makers

propose land use development patterns that make the

most efficient and feasible use of infrastructure and

public services. Because development is tied to

economic incentives, locational externalities, and

geological features, spatial econometric models are

needed to design development and conservation

strategies that address specific environmental con-

sequences. Macon County provides an excellent study

site for testing our methodology because institutional

factors such as land use regulations have only a minor

influence on the area’s development because the

region contains no land use zoning or regulations.

While the process of urban growth and develop-

ment has long been a focus of study, there has been

increasing interest in non-metro and fringe area

development (e.g., Irwin et al., 2003; Miller, 2003;

Libby and Sharp, 2003; Irwin and Bockstael, 2002).

The development of tests for spatial autocorrelation or

dependence in linear regression models as well as the

development of efficient and consistent estimators for

these types of models have been an important part of

the spatial econometric literature over the last few

decades (e.g., McMillen, 2003; Tse, 2002; Leung et

al., 2000; LeSage, 1997; McMillen, 1992; Anselin,

1988; Cliff and Ord, 1973). While land development

models that account for spatial relationships have

begun to emerge, such models have focused on

development probability or stochastic processes

(Dubin, 1988, 1992; Can, 1990, 1992; McMillen,

1992, 1995; Bockstael, 1996). Details of spatial
pattern such as density or intensity have not been

accommodated. To understand spatial processes and

patterns, we must take both types into account (Cheng

and Masser, 2003).

In this article, we examine the spatial patterns of

land development and the density of land develop-

ment of a rural county experiencing rapid change. It

focuses on an empirical analysis that is useful in

understanding rural growth in a spatial context. We

also account for spatial dependence by using an

integrated approach that combines Geographical

Information System (GIS) and spatial econometric

models. The spatial dependence with unknown dis-

turbance error is diagnosed by creating spatial lagged

variables that capture unobserved characters in

regression models (Cliff and Ord, 1973). The GIS

and spatial statistics allow for spatially explicit

analysis by providing flexibility in specifying models

and measuring variables (e.g., Ding, 2001; Lake et al.,

2000; Geoghegan et al., 1997).
1. Empirical model

Land development decisions by a landowner at the

parcel level have been modeled using discrete choice

models. These models estimate the probability of land

development as a function of parcel-level attributes

(e.g., Bockstael and Bell, 1998; Bockstael, 1996).

Because a priori returns from parcel development are

unknown with certainty, Bockstael (1996) developed

a hedonic model of land values to estimate predicted

land values, which were then used as a proxy for the

expected returns of development. Then, in a second

stage, they modeled land development using a discrete

choice model incorporating these predicted land

values.

We extend Bockstael and Bell’s two-stage model

into a three-stage model to accommodate the density

of development. We estimate a hedonic model of land

value in the first stage, a development model in the

second stage, and a density of development model in

the third stage. The first-stage hedonic model utilizes

attributes of land values. The predicted land value is

estimated from the hedonic model and used as a proxy

for the expected return of development in the second

and third stage estimations. The second stage estima-

tions of the development model identify character-
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istics that determine land development. The third

stage estimations of the density of development model

identify characteristics that determine the density of

land development. We also attempt to identify how

the patterning of landscape and spatial dependency

affect land value, development, and the density of

development.

1.1. First stage: the hedonic model

A hedonic model can integrate anything that affects

land values. We include obvious variables from the

literature, such as distance to city centers, major roads,

proximity to desirable natural amenities (e.g., lakes,

streams, and rivers), geological such as jurisdictional,

development, and neighboring development indica-

tors, and neighborhood features such as relative

abundance of roads, streams, and rivers. Under the

assumption that the hedonic model closely approx-

imates what developers are likely to view as the

market condition, the predicted land values from the

model are used as proxies for expectations of returns

from development in the second and third stages.

Economic theory generally places few restrictions

on the functional form of the hedonic price form. The

form is selected empirically according to the perform-

ance of the several functional forms, typically ad hoc,

and goodness of fit criteria. Since the main focus of

our analysis is on spatial econometric aspects, a

detailed analysis of the role of different functional

forms is not provided. Flexible functional forms, such

as the Box–Cox transformation, have become increas-

ingly prevalent for estimation of hedonic models but

such specifications are not readily implemented in the

presence of spatial dependence. Therefore, we con-

sidered some common functional forms (linear, semi-

log, log–linear, and inverse-semi log) for our analysis.

An analysis of the residuals from these functional

forms revealed that linear and inverse-semi log

provided a poor fit while the semi-log and log–linear

fit the models relatively well. We judged that the best

of the four alternatives was the log–linear form.

A number of studies using parcel data have found

that the most common cause of heteroscedasticity in

hedonic models is parcel size. This is largely due to

the fact that fragmentation of land use and growth

increase development density, which leads to increas-

ing land values. We tested for heteroscedasticity using
the Glejser test, which regresses acres of parcel

against the absolute value of the residuals from the

hedonic model and used the Hansen–White correction

to estimate standard errors. Initially, the standard

hedonic model is estimated in semi-log form. The

initial ordinary least squares (OLS) model is then re-

estimated with weighted least squares using the

reciprocals of the normalized predicted values from

the absolute residual model based on Goodman and

Thibodeau (1995, 1997). This iterative procedure is

then repeated until the largest change in any of the

parameters is less than 0.0001. This model is therefore

based explicitly on the assumption that heteroscedas-

ticity is due to the size of the parcel.

To evaluate the prediction accuracy of the hedonic

model, we estimated a hedonic regression and then

use the estimated coefficients for out-of-sample

prediction. For each out-of-sample prediction, we

computed the absolute difference between the esti-

mated value of the land and the actual assessed land

value. We then calculated the percentage of differ-

ences within 10% and 20% of the actual assessed land

value. This was done for both initial OLS model and

weighted least squares model.

1.2. Second stage: binary model for land development

decision

The simplest characterization of the development

decision for a parcel of land is that the landowner of

parcel j, which is currently in state a is converted to

state i at time t if

RjitjazRjmtja ð1Þ

for all land uses m =1,. . ., M (including a). Rjit|a

represents the present value of the infinite stream of

net returns to parcel j, in state i at time t, given that

the parcel was in state a in time t�1. It is a function

of observable variables and a random portion, g. The
probability that land parcel j that is in land use a at

time t�1 will be found in land use i at time t is

given by

Pr Rjitja þ gjitjaNRjmtja þ gjmtja
� �

ð2Þ

for all m =1. . ., M (including a).

This may be an oversimplication because the

infinite stream of net returns is not known with
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certainty and most conversions are irreversible. Arrow

and Fisher (1974) showed that over-development

would likely occur when irreversibility is ignored.

Titman (1985) examined the relationship between

uncertainty and land values and showed that uncer-

tainty about future land values decreases building

activities in the current period. The conversion

decision could be made temporarily dynamic by

recognizing that the probability of conversion depends

on the initial state and possibly the cumulative history

of the parcel such as accumulation or depreciation of

natural, human, and structural capital. The conversion

decision could be made spatially dynamic as well by

recognizing that the value of a parcel land in different

uses may be a function of changes in the neighboring

land uses, in the pattern of those land uses, and the

existence and spatial pattern of infrastructure. How-

ever, in the general case with dynamic states, the

discrete choice model of this kind would be difficult

to estimate reliably and would preclude any spatial

treatment of error structure. In addition, over 90% of

the human induced-land use conversions that took

place are from agriculture or forest to some density of

residential development. The problem can be reduced

to a dichotomous choice problem conditioned on the

time period t, by estimating the probability that land

will or will not be developed (Bockstael, 1996).

The probability that parcel j (which is currently in

an undeveloped state), will be developed in time t is

given by

Pr developð Þ ¼ Pr Rjdt þ gjdtNRjut þ gjut
� �

¼ Pr Rjdt � RjutNgjut � gjdt
� �

; ð3Þ

where d denotes a developed state and u denotes an

undeveloped state. The certain returns from develop-

ment of a parcel are not known when the developer

makes her decision because the decision is made

based on the expected value of net return. We

assume that the landowner formulates a hedonic on

land characteristics from her observations of market

transaction following Bockstael (1996). If the

hedonic model estimates what the developer is likely

to view as the market condition at time t, then we

can use the predictions from the hedonic model as

proxies for the expected value of net return from

conversion.
The distribution for gjut�gjdt is typically assumed

to follow a logistic or normal distribution. If a logistic

distribution is assumed, the probability of land

development can be derived as a logit model. If a

normal distribution is assumed, the probability of land

development can be derived as a probit model. The

logit model is similar to the probit model, and

attempts practically the same mission. In this study,

we assume the probability of land development

follows a probit model:

Pr developð Þ ¼ U b VXð Þ ð4Þ

This land development model is estimated using

parcel-level data. Given that we only know whether

a particular parcel of land was developed or not at

this stage, the probit model must be estimated

using maximum likelihood methods. The likelihood

function is

L ¼
Y
i¼l

F bVXið Þyi 1� F bVXið Þ½ � 1�yið Þ; ð5Þ

where F(d ) is the standard normal cumulative distrib-

utive function, and yi=1 if parcel i is developed. The

model can be used to evaluate the effect of alternative

variables on land development. For example, the

marginal effect of predicted land value on the

probability of land development equals

BProb y ¼ 1½ �
Bv

¼ u b VXð Þbv ð6Þ

for the probit model where bv is the coefficient on the

predicted land value measure v.

1.3. Third stage: a binary model of high and low

density development

A binary system of high and low density develop-

ment is estimated in the third stage. The density

reflects the strength of development in any developed

parcel. High density development defines a parcel of

land with more than one structure per acre while low

density development defines a parcel of land with one

structure or fewer per acre. The probability of high-

density development is derived as a probit model:

Pr ijyð Þ ¼ U b VXð Þ ð7Þ

Let i|y represents the event of high-density devel-

opment i when development, y =1 occurs (conditional
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probability); theoretically Pr ob[iy]=Pr ob[i|y] (iy

means the event of high-density development). Based

on the two formulae (Eqs. (4) and (7)), we can

calculate the probability value of high-density devel-

opment (that is Pr ob[iy]).

1.4. Spatial autocorrelation

In order to detect spatial autocorrelation of land

value for the hedonic model, we use Moran’s index.

The index can be applied to zones and points with

continuous variables associated with them. The

formula to calculate Moran’s Index (I) for the case

of the hedonic model is following:

I ¼
N
X
i

X
j

WijðXi �X̄ ÞðXj �X̄ Þ

X
i

X
j

Wij

 !X
i

Xi �X̄
� �2 ð8Þ

where N is the number of cases, Xi is the land value

for parcel i, X̄ is the mean of land value, and Wij is

the distance based-weight which is the inverse

distance between parcel i and j. The value is similar

to a correlation coefficient, varying between �1 and

1. When autocorrelation is high, the coefficient is

correspondingly high so that a high I-value indicates

positive autocorrelation.

The joint–count spatial statistics technique is used

to diagnose the spatial dependence of development

and density of development of binary variables. The

join patterns of the parcels can be identified as rook’s

and queen’s cases. The rook’s case identifies the

circumstance in which two polygons are adjacent to

each other so that they share a common boundary. The

queen’s case identifies the circumstance in which two

polygons share either a common boundary or a

common vertex.

The null hypothesis of spatial dependence of

development states that neighboring parcels are more

likely to be of the same category, developed or

undeveloped. The observed joint–count statistics ndd
and nuu count the number of joint encounters in

adjacent parcels having the same category; the

corresponding ndu statistic counts the number of

adjacent parcels not having the same category. Thus

the ndd and nuu statistics assess the presence of

positive spatial autocorrelation, while ndu assesses the
presence of negative spatial autocorrelation. The

count of developed–developed (1–1) joins can be

calculated as

ndd ¼
XX

wijYij; where Yij ¼ xixj ð9Þ

with the observation xi is 1 and xj is 1, and the spatial

weight matrix, wij is calculated as

wij ¼ 1 if dij ¼ b

ffiffiffiffiffiffiffiffiffiffi
areai

p

r
b is a parameterð Þ;

and wij ¼ 0 if dij ¼ b

ffiffiffiffiffiffiffiffiffiffi
areai

p

r
ð10Þ

where wij is the element of the spatial weight matrix;

dij represents the distance between parcels i and j (air

distance between centroids); b is a parameter. If

adjacent parcels have the same (or similar) size and

shape as the central one, b =2 represents the rook’s

case while b =3 represents the queen’s case (Cliff and

Ord, 1973). The count of developed–undeveloped (1–

0) joins is calculated as

ndu ¼
XX

WijYij; where Yij ¼ xixj ð11Þ

with the observation xi=1 and xj=0 or vice versa.

The spatial weight matrix is included to account

for parcel size and the distance between parcels.

The significance of the joint–count statistic is

achieved by computing a standard normal deviate

using a two-tailed test to detect positive or

negative spatial autocorrelation. The same joint–

count statistics have been applied to density of

development.

As the spatial autocorrelations are detected in

continuous or binary variables, spatial lagged vari-

ables are created and used to correct the problem.

The variables are added as explanatory variables in

the equations to capture the spatial pattern. Mean

land value of the parcels adjacent to its own parcel

is used for the variables capturing the spatial

patterns of land value. A dummy variable indicating

whether an adjacent parcel is developed or undevel-

oped is used for the variable capturing the spatial

pattern of development. A dummy variable indicat-

ing whether an adjacent parcel has high density or

low density development is used for the variable

capturing the spatial pattern of the density of

development.
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2. Data

The land records division of the Macon county

tax administration department provided us with the

January 2003 tax assessment records (updated every

4 years) in a shape file that included information

about land parcel size, number and type of

structures in a parcel, and the assessed land and

structure values. The assessed land value is used for

the proxy for land price. In 1967, there were 40,075

vacant polygons in the records. The records of

40,039 polygons were used for our study after

eliminating missing observations. Structures existing

prior to 1967 were not considered in our model due

to unavailability of built years in the records. Each

polygon represents one land parcel. Out of the

40,039 parcels, 15,725 parcels are predicted to be

developed by the probit model for the land

development decision. These 15,725 parcels are

then used to estimate the probit model for high-

density development because the probability of

high-density development is conditional on parcel

development.

GIS is utilized to generate the spatial variables. The

variables of sum of road per acre and sum of stream

and river length per acre are calculated by using an

ArcView script.2 The variable of sum of road per acre

is created to measure the effects of both relative

abundance and existence of roads in a parcel which

cannot be measured by the variable of distance to

roads. Similarly, the variable of sum of stream and

river length per acre is created to measure the effects

of both relative abundance and existence of streams

and rivers in the neighborhoods.

The variables of distance to the nearest city center

(the cities of Franklin or Highlands), distance to the

closest stream and river, and distance to the closest

road are calculated using the ArcView script, bNearest
Features, with Distances and BearingsQ.3 Although

travel distance is a more accurate measure, air-
2 The script was developed with help of Tripp Lowe, Information

Analyst at the School of Forest Resources, University of Georgia

based on Census 2000 TIGER/Line shape files that are downloaded

fromEnvironmental SystemResearch Institute, Redlands, California.
3 The script was developed by Jeff Jenness, GIS Analyst at US

Forest Service, Rocky Mountain Research Station.
distance can be used as a proxy for accessibility4

(McMillen, 1989; Hushak, 1975). Thus, the air

distances are used for the proxies of all the distance

variables in our study.

The variables of flat ratio and median elevation are

used for the geological characteristics. Because many

second-home owners seek locations at higher eleva-

tions with better views in the mountainous region of

the county, the ratio of flat area to total area is

suspected to be an influential factor for both land

value and development decisions. The flat ratio and

median elevation are measured using the data set from

digital elevation models. The data set consists of a

raster grid of regularly spaced elevation values that

have been primarily derived from the topographic

map of the U.S. Geological survey series. The flat

ratio and median elevation for polygons of the area are

calculated using an ArcView script, bSurface Tools for
Points, Lines, and PolygonsQ.5
3. Estimation and results

Definitions and descriptive statistics of the varia-

bles used in the estimation of the models are shown in

Tables 1 and 2, respectively. The results in Table 3

show that statistical tests reject the null hypothesis of

no spatial dependence among developments of adja-

cent parcels in both rook’s and queen’s cases,

supporting the notion that spatial dependence exists

in the land development. This implies that a parcel is

more likely to be developed if the parcel is closer to a

developed parcel. The negative value of the standard

normal deviation of du (a case of a developed lot

adjacent to an undeveloped lot) suggests that devel-

oped and undeveloped lots are less likely to be

neighbors. The results in Table 4 also show that

statistical tests reject the null hypothesis of no spatial

dependence among density of developments in both

rook’s and queen’s cases, supporting the notion that

spatial dependence exists among density of develop-
4 Travel distance can be estimated using accessibility analysis

which integrates road category as a main classifier along with traffic

flow data, physical barrier information, and transportation network

data.
5 The script was developed by Jeff Jenness, GIS Analyst at US

Forest Service, Rocky Mountain Research Station.



Table 1

Descriptions of the variables

Variables Descriptions

Land value Natural log of land value per acre

Adjacent land value Mean land value of adjacent parcels

Land development Dummy variable, 1 if a parcel is developed; 0 otherwise

Land development density Dummy variable, 1 if a parcel is developed in high density; 0 otherwise

Adjacent development Dummy variable, 1 if an adjacent parcel is developed; 0 otherwise

Adjacent density Dummy variable, 1 if an adjacent parcel is developed in high density; 0 otherwise

Area Area of a parcel in acre

Sum of roada per acre Sum of road length in mile per acre

Sum of stream and riverb length per acre Sum of stream and river length in mile per acre

Distance to city center Distance from a center of a parcel to the nearest city, Franklin or Highlands in mile

Franklin dummy Dummy variable, 1 if a parcel is within a jurisdiction of city of Franklin; 0 otherwise

Highlands dummy Dummy variable, 1 if a parcel is within a jurisdiction of Highlands; 0 otherwise

Distance to stream and river Distance from a center of a parcel to the nearest stream or river in mile

Flat ratio Ratio of flat area to total area

Median elevation Median elevation in mile

Distance to road Distance from a center of a parcel to the nearest road

a Road includes primary road, secondary road, and local, neighborhood, and rural road defined by U.S. Census Bureau.
b Stream and river include basic hydrograph and natural flowing water defined by U.S. Census Bureau.
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ments as well. A positive and strong Moran’s index of

0.4035 suggests existence of spatial dependence in the

value of land. These results regarding spatial depend-

ence support the notion of rural cluster development

and a spatial pattern of housing value.

The initial estimates of the hedonic model, reported

in Table 5, include t-statistics from both the original
Table 2

Statistics of the variables

Mean Maximum Minimum Standard

deviation

Land value 6.30 10.13 0 8.64

Adjacent land value 7.31 10.07 0 9.27

Land development 0.49 1 0 0.39

Land development

density

0.27 1 0 0.45

Adjacent development 0.77 1 0 0.42

Adjacent density 0.23 1 0 0.41

Area 5.98 7071 0.01 79.91

Sum of road per acre 0.08 1.86 0 0.77

Sum of stream and river

length per acre

0.10 3.96 0 0.30

Distance to city center 22.20 91.22 0 19.35

Franklin dummy 0.06 1 0 0.24

Highlands dummy 0.07 1 0 0.26

Distance to stream

and river

1.22 7.98 0 0.95

Flat ratio 0.98 1 0.81 0.01

Median elevation 0.82 1.63 0.57 0.21

Distance to road 0.31 5.39 0 0.46
specification and re-run using the White correction.

The results from the Glejser test, reported in Table 6,

have acres as the independent variable and the

residuals from the aggregate hedonic model including

the square root of acres and one of acres terms as the

dependent variable. The test shows that heteroscedas-

ticity is present in the hedonic model. Both the initial

and adjusted t-statistics with respect to acres are

highly significant. The estimates with weighted least

squares using the reciprocals of the normalized

predicted values from the absolute residual model

are reported in Table 7. The accuracies of the

predicted values in Tables 5 and 7 show that the

model corrected for the heteroscedasticity of parcel

size improves accuracy at the 20% level by about 8%.
Table 3

Spatial dependencies of land development

b =2 b =3

dda dub uuc dd du uu

Observations 16,215 9412 34,935 38,367 31,238 75,621

Expectations 8813 2768 23,182 23,213 73,659 51,326

Variance 400 307 724 1161 744 1598

t-value 16.33 �47.26 19.25 14.54 �49.78 17.88

a A case of a developed parcel is adjacent to a developed parcel.
b A case of a developed parcel is adjacent to an undeveloped

parcel.
c A case of an undeveloped parcel is adjacent to an undeveloped

parcel.



Table 6

Glejser heteroscedasticity tests on acres

a b

Glejser test on original specification 0.6928 0.0061

t-statistic 159.28 22.33

White t-statistic 169.63 27.4

Glejser test on square root acres 0.7207 �0.0013

t-statistic 118.95 18.33

White t-statistic 121.43 21.10

Glejser test on one over acres 0.0041 0.0005

t-statistic 152.12 76.78

White t-statistic 158.64 81.81

Table 4

Spatial dependencies of density of land development

b =2 b =3

hha hlb llc hh hl ll

Observations 2574 1430 5946 5945 4271 12871

Expectations 1430 409 3964 3716 1630 7987

Variance 65 52 162 199 112 325

t-value 22.18 �35.71 12.51 19.75 �39.71 13.19

a A case of a high-density developed parcel is adjacent to a high-

density developed parcel.
b A case of a high-density developed parcel is adjacent to a low-

density developed parcel.
c A case of a low-density developed parcel is adjacent to a low-

density developed parcel.
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The 63% goodness of fit and 81% of accuracy with

20% deviation (Table 7) verify that the predictability

of the hedonic model with weighted least squares is

reasonably good and can be used as a proxy for the

expected returns of development for the development

models in the second and third stages.

Table 7 shows that all the variables are significant

at the 5% level. The natural log of the value per acre

increases as a parcel of land is developed, as an

adjacent parcel’s land value increases, and as parcel
Table 5

Hedonic model with ordinary least squares

Variable Parameter

estimate

t-statistics White’s

t-statistics

Intercept �22.5897 �44.64 �30.56

Land development �0.0059 �0.50 �0.66

Adjacent land value 0.1233 45.95 52.12

Area �0.0177 �37.81 �69.27

Sum of road per acre �0.5988 �12.95 �8.64

Sum of stream and river

length per acre

0.0509 1.95 1.85

Distance to city center �0.0086 �25.22 �29.04

Franklin dummy 0.9455 37.22 39.22

Highlands dummy 1.1016 40.91 36.45

Distance to stream and river �0.0386 �6.06 �6.96

Flat ratio 20.9053 41.46 46.41

Median elevation 1.5427 46.80 48.30

Distance to road �0.1669 �12.97 �16.14

Dependent variable=natural log of land price per acre.

Observation=40,039.

F-value=3328.36.

ProbNF =0.0001.

R-square=0.5338.

Adjusted R-square=0.5336.

Percentage of prediction within 10% of land value=43.8.

Percentage of prediction within 20% of land value=73.7.

Table 7

Hedonic model with weighted least squares

Variable Parameter

estimate

t-statistic

Intercept 3.0417 144.85

Land development 0.1765 13.08

Adjacent land value 0.0904 53.83

Area �0.0929 �46.47

Sum of road per acre �0.8890 �16.90

Sum of stream and river length per acre 0.1746 6.11

Distance to city center �0.0039 �10.43

Franklin dummy 0.3291 11.37

Highlands dummy 1.0648 35.14

Distance to stream and river �0.1113 �15.71

Flat ratio 4.8424 120.22

Median elevation 1.1331 31.69

Distance to road �0.0793 �5.53

Observation=40,039.

F-value=3554.24.

R-square=0.6269.

Adjusted R-square=0.6258.

Percentage of prediction within 10% of land value=49.5.

Percentage of prediction within 20% of land value=81.4.
size decreases. While a decrease in distance from a

land parcel to the closest road increases land value, an

increase in the sum of road per acre decreases land

value. This implies that people value the convenience

of being closer to roads but they do not like to be

crowded by roads. Both a decrease in distance from a

land parcel to the closest stream and river and an

increase in sum of stream and river length per acre

increase land value. This result reflects that streams

and rivers are valued positively on both their own land

as well as on neighboring land. Finally, land parcels

with a greater proportion of flat area are valued higher

and land parcels at higher elevations also have greater



Table 8

Probit model results of land development

Variable Parameter estimate Standard error Chi-square ProbNChi

Intercept �8.8723 0.7423 106.23 0.0001

Predicted land value 0.0596 0.0124 20.31 0.0001

Adjacent development 0.6601 0.0248 680.21 0.0001

Area �0.0154 0.0072 5.03 0.0361

Sum of road per acre 0.0006 0.0001 199.28 0.0001

Sum of stream and river length per acre �0.0001 0.0003 0.45 0.6013

Distance to city center �0.0024 0.0009 22.58 0.0001

Franklin dummy 0.0527 0.0549 0.58 0.4374

Highlands dummy 0.1925 0.0428 11.09 0.0010

Distance to stream and river �0.0193 0.0861 4.25 0.0561

Flat ratio 9.6351 0.8627 127.46 0.0001

Median elevation �0.3294 0.0528 33.44 0.0001

Distance to road �0.4121 0.0224 371.31 0.0001

Dependent variable=1 if land parcel is developed; =0 if not.

Log likelihood for normal=�12,901.23.

Number of observation=40,039.

Percent correct predictions=65.23.
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value confirming that second-homeowners value sites

at higher elevations with better views.

The estimated results of the probit models of land

development and density of land development are

reported in Tables 8 and 9, respectively. The percent

correct prediction for the land development model and

the density of land development model are 65.23 and

84.17, respectively. The two models yield similar

outcomes in terms of significance of the variables, but

the marginal effect is quite different. To examine the
Table 9

Probit model results of density of land development

Variable Parameter estimate

Intercept �1.7231

Predicted land value 0.0427

Adjacent development 0.0315

Area �2.5833

Sum of road per acre 0.7158

Sum of stream and river length per acre �0.0671

Distance to city center �0.0062

Franklin dummy 0.1188

Highlands dummy 0.0959

Distance to stream and river �0.0284

Flat ratio 1.8858

Median elevation �0.4634

Distance to road �0.1973

Dependent variable=1 if land parcel is developed in high-density; =0 if n

Log likelihood for normal=�3731.25.

Number of observation=15,725.

Percent correct predictions=84.17.
effects of the variables, we estimate the empirical

relationship between the continuous variables and the

percent of land development and density of land

development. This is done by first substituting the

mean values of all the other variables and then

calculating the probabilities of land development

and density of land development when the continuous

variable varies.

The probabilities of development and high density

development increase similarly with an increase of the
Standard error Chi-square ProbNChi

0.2612 17.91 0.0001

0.0185 4.53 0.0384

0.0226 3.15 0.0720

0.2433 4.01 0.0356

0.0619 142.51 0.0001

0.1264 0.42 0.4327

0.0011 12.39 0.0001

0.0541 3.14 0.0554

0.0242 9.62 0.0015

0.0166 3.17 0.0741

0.1764 72.33 0.0001

0.1829 8.97 0.0022

0.0641 10.25 0.0017

ot.
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predicted land value per acre. The probability of

development increases with a decrease in parcel size

because land conversion occurs after lots are sub-

divided for subdivisions. Likewise, the probability of

high density development also increases with a

decrease in parcel size reflecting the fact that land

use fragmentation and growth increase development

density. The result is also consistent with previous

literature in which population density is shown to

increase the fragmentation of development (Carrion

and Irwin, 2004). We also find that parcel sizes greater

than 10 acres have close to 0% probability of high

density development. This low density development

in larger parcels provides evidence of the fact that

more than half of total new single-family home

acreage in the period from 1994 to 1997 is associated

with new homes built on lots of 10 acres and larger

(Lang, 2000).

Both the probabilities of development and high

density development increase with an increase in the
Fig. 1. A Map of the predicted pr
sum of roads per acre but decrease with an increase

in distance to roads. The marginal effect of the

predicted sum of roads per acre on the probability of

land development indicates that 0.01 miles or 52.8 ft

of sum of road per acre increases the probability of

development by 1.6%. The probabilities of both

development and high-density development are close

to zero in land parcels 10 miles or more from the

closest road. This implies that road accessibility of a

given land parcel is a necessary element for

development.

Land parcels closer to streams and rivers are more

likely to be developed, and they are more likely to be

developed in high density. The probability of high-

density development of the land parcels adjacent to a

stream or river is around 20%. They are close to zero

for land parcels 10 miles or more from any stream and

river. This shows that both development and high-

density development are highly correlated with

adjacency to streams and rivers.
obabilities of development.
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The probabilities of both development and high

density development are greater in land parcels closer

to Franklin or Highlands. The land parcels within the

jurisdictions of Franklin and Highlands are more

likely to be developed and they are more likely to be

developed in high density than the land parcels

outside of the jurisdictions.

Land parcels need to have a flat ratio of at least

60% to have positive probability of development. The

probability of development increases sharply as the

flat ratio increases. The probabilities of both develop-

ment and high density development increase with

decreases in elevation. Despite the higher values of

land parcels at higher elevation, the probabilities of

development and high density development are still
Fig. 2. A Map of the predicted proba
higher at lower elevations. This seemingly incongru-

ous result may be explained by the scarcity of

available land and low affordability of houses at

higher elevations because of the additional building

costs. Though many prefer to buy houses on top of

mountains for better views, few can afford to buy

those houses. Thus, the probability of development is

higher at lower elevation despite the higher values of

land parcels at higher elevation. The high density at

lower elevations is expected since the smaller flat ratio

at higher elevations does not allow high density

development.

A map of the predicted probabilities of land

development (Fig. 1) and a map of the predicted

probabilities of density of development (Fig. 2) are
bilities of density development.
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produced using the estimates from the models. These

maps are not meant to predict which parcels will be

developed, but rather highlights those areas which

will most likely be developed. Fig. 1 shows that

15,725 or 39% of the land parcels have predicted

probabilities of conversion equal to or greater than

50%. The large white area identifies missing obser-

vations and National Forest area. The predicted high

density development in Fig. 2 shows that 3213 or 20%

of the land parcels are likely to be high density

conversion.
4. Conclusions

The spatial pattern of development at a multiscale

perspective has important environmental consequen-

ces that range from change of water quality to

biodiversity. In fact, land use change at one scale or

another is perhaps the single greatest factor affecting

ecological resources (Hunsaker and Levine, 1995).

The pattern of land use is also tied to economic

incentives, locational externalities, and geological

features. These findings, along with our land-use

projections, suggest how spatial models could be used

to design development and conservation strategies

that address specific environmental consequences in

specific places.

For the evaluation of future environmental impacts

or conservation strategies, predicting a specific land

use in a particular place is as important as under-

standing where the relative probabilities and densities

of change are. Land-use forecasting models in a

spatial framework can be used to draw land-use maps

which show the linkage between risk assessment and

environmental impact models. In this kind of analysis,

we can understand where human activities generate

significant environmental consequences, focusing

future research and planning by linking the spatial

dynamics of human populations to potential environ-

mental impacts that are the most critical in supporting

environmental health.

The most obvious audience to benefit from this

research will be decision-makers in Macon and the

surrounding counties. The detailed projection of

development and density pattern can be used to

highlight the effects of local policy decisions. These

include direct land use regulation, such as zoning, and
more indirect land use policies such as the provision

or expansion of public infrastructure or other public

services. The projected density pattern provides

background for the need for zoning the density of

houses per acre in the various residential areas. The

changes expected to be made in the various densities

are intended to assist the general policy of expanding

the residential population of the study area and

facilitate clarity in development control. Decisions

for changes can then be proposed to the current

residential zones based on the projected density

patterns.

Similarly, quantification of the effects of economic,

locational, and geological features on residential

development and density patterns should also help

decision makers establish a land use development

pattern that makes the most efficient and feasible use

of existing infrastructure and public services. It also

provides a guideline for new developments that

maintain or enhance the quality of the study area.

For example, policy makers could utilize the existing

infrastructure and public services more efficiently by

developing a program that encourages growth toward

locations where development clusters exist and

development is predicted.

The next logical step of our analysis is to improve

the model specification by adopting unobserved site-

specific characteristics. About 80% of the study area

is forested land, so that forest site characteristics such

as size, shape, and accessibility, and timber character-

istics such as the number of trees per acre, species,

and size are likely to be important to the land

valuation decision. Inclusion of these characteristics

would reduce biases caused by omitted variables.

Another extension of this research would be to

combine the results with aggregate-type land analysis.

Aggregate land analysis examines patterns of land use

from a macro viewpoint. The analysis generally use

counties, county groupings, census blocks, and cen-

sus-block groups as units to highlight how socio-

economic factors and physical landscape features

influence land use allocations. This type of analysis

can capture broader physical and social phenomena

which landowner-specific analyses may miss. How-

ever, this type of analysis does not capture information

in a spatially explicit framework. Spatial joining of the

aggregate and landowner-specific datasets would

allow us to bridge the analyses of two different scales.
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