Proceedings of the 5th Southern Forestry and Natural Resources GIS Conference

Asheville, North Carolina June 12-14, 2006

• • •

Editors

STEVE PRISLEY PETE BETTINGER I-KUAI HUNG JOHN KUSHLA

• • •

Warnell School of Forestry and Natural Resources University of Georgia Athens, GA

December 2006

PREFACE

The 5th Southern Forestry and Natural Resources GIS Conference provided ample illustration of the continuing widespread application of geospatial information technologies in the monitoring and management of the forests of the southern United States. Beginning with the keynote address, describing how GIS has become part of a statewide enterprise information system, to the posters and papers presented, we can see the crucial role that these information technologies play in understanding, measuring, monitoring, and managing a wide array of natural resources.

Sessions on remote sensing, and global positioning systems illustrated the applications and ongoing development of these core technologies. Sessions on GIS systems and geospatial service systems focused on the management and delivery of geospatial information. Other sessions provided examples of applications in the areas of aquatic resources, forest and land inventory, habitat modeling, disturbance modeling, and broad-scale analyses.

For the first time, this conference was held in Asheville, amid the mountains and forests of western North Carolina. But as in past conferences in this series, it was attended by an array of natural resource professionals from federal and state governments, universities, consulting firms, forest industries, and non-governmental organizations.

The conference was sponsored and supported by the Southern Regional Extension Forester, the Warnell School of Forestry and Natural Resources, the Center for Forest Business, and the Center for Continuing Education at the University of Georgia. In addition, the conference coordinating team was supported by the Arthur Temple College of Forestry and Agriculture at Stephen F. Austin State University, the Department of Forestry at Virginia Tech, and Mississippi State University. The support of numerous other organizations, including vendors and exhibitors, is gratefully acknowledged.

Pete Bettinger served as conference chair, I-Kuai Hung was the program chair and developed the conference logo, Steve Prisley was the proceedings chair, and John Kushla served on the planning committee and assisted in editing the proceedings. Finally, the editors wish to express their appreciation to several individuals who helped to make the conference successful, including Ben Jackson and Holly Blanchard (Georgia Center for Continuing Education), and Bill Hubbard (Southern Region Extension Forester). The proceedings cover was designed by Ana Constantinescu of the Virginia Tech Center for Geospatial Information Technologies.

S.P.

Proceedings of the 5th Southern Forestry and Natural Resources GIS Conference

TABLE OF CONTENTS

KEYNOTE ADDRESS

The Map is the Business: Enterprise GIS for a State Forestry Agency 1 John Scrivani
GLOBAL POSITIONING SYSTEMS
Accuracies of Various GPS Antennas under Forested Conditions
Assessing GPS Accuracy, WAAS, and a Choke Ring Antenna Solution in a Southern Hardwood Forest
Increased Precision in Estimating Forest Inventory Parameters Based on Canopy Sampling
SPATIAL ANALYSIS
Spatial Analysis of Potential Impacts of Local Forestry Ordinances
A Spatial Analysis of 20th Century East Texas Sawmills: From Trams to Electrons
Spatial Analysis of the Change in Land Cover and Human Well-being in the Black-Belt Counties of Alabama
REMOTE SENSING
Estimation of Southern Pine and Hardwood Forest Canopy Structure Using Small Footprint Lidar
Using Geospatial Methods for Derivation of Fine Spatial Resolution Forest Inventory from Ground Inventory Data and Landsat Imagery

Above-Ground Biomass Estimation in Forestland Using A Landsat Thematic Mapper Image with Supervised Regression Analysis <i>R. Hayashi and P. Bettinger</i>	63
AQUATICS	
Geospatial Modeling of Forest Road Networks and Their Effects on Stream Macroinvertebrate Communities <i>A.M. Bernard, S.P. Prisley, W.M. Aust and C.D. Heatwole</i>	70
The Personal Geodatabase as a BMP for Stormwater Management <i>C.T. Smith and H.A. Devine</i>	82
Adding Value to Historical Research - Developing a GIS Database of Aquatic Species L. Teeter, M. Polyakov, and S. Glover	91
GIS / INVENTORY	
Temporal Analysis of Landsat Satellite Imagery for Land Cover Change Tracking in Southeastern Georgia <i>R. Lowe and C. Cieszewski</i>	92
A GIS Sampling Assistant Program for Forest Inventory Point/Plot Schemes D.J. Lipscomb, D.J. Nowak, J.T. Walton, and C. Post	93
Analysis of Fiber Supply Sustainability in Different Procurement Areas in Georgia C.J. Cieszewski, R. Lowe, and S. Liu	103
GIS Systems	
The Google API - A Forestry GIS Data Distribution Platform <i>C. Neese</i>	104
Status of GIS Databases and Analyses for the Chattahoochee National Forest <i>E. Mavity</i>	105
Forest Land Classification Using Isoclustering Procedure: An Exploratory Analysis Y. Wang, S. Parajuli, D. Lemke, X. Chen, W. Tadesse, C. Schweitzer, and G. Smalley	106
NATURAL DISTURBANCE MODELING	

Managing Hurricane Impacts on Wild Fire Fuel Loads in Southern US Forests 115 J. Moore Myers, S. McNulty, and S. Strickland

Mapping Forest Hurricane Damage Using Automated Feature Extraction J.M. Shedd, H. Devine, and D. Hulbert	116
Evaluation of Ikonos Satellite Imagery for Detecting Ice Storm Damage to Oak Forests in Eastern Kentucky W.H. McNab, T. Roof, and J.F. Lewis	128
WILDLIFE HABITAT MODELING	
A GIS Tool for Evaluating the Impact of Proposed Cuts on Red-cockaded Woodpecker Habitat D.J. Lipscomb and T.M. Williams	139
Evaluating Population-Habitat Relationships of Forest Breeding Birds at Multiple Scales Using Forest Inventory and Analysis Data <i>T.M. Fearer, D.F. Stauffer, S.P. Prisley, and P.D. Keyser</i>	148
GIS for Planning and Management at Merritt Island National Wildlife Refuge Complex or GIS for the Funding Impaired <i>F.W. Adrian and C.M. Ehrhardt</i>	149
BROAD SCALE ANALYSES	
Correlation Between Pollen Dispersion and Forest Spatial Distribution Patterns In the Southeastern United States P.P. Siska, I-K. Hung, and V.M. Bryant, Jr.	159
An Overview of Methodologies for Mapping Ecological Systems Vegetation Classes for the Piedmont Region of the Southeastern US J. Lee, K. Samples, and L. Kramer	172
GEOSPATIAL SERVICE SYSTEMS	
The Columbia Regional Geospatial Service Center System: A Model for Rural Geospatial Support for the Nation	173
LANDFIRE: What is it; Where is it; Is it Different; How Might it Be Used?	174
OTHER	
Factors Affecting Site Productivity of Loblolly Pine Plantations Across the Southeastern United States <i>C.L. VanderSchaaf and S.P. Prisley</i>	175

POSTERS

Using Remotely Sensed Data to Quantify the Spatial Extent and Acreage of Contaminated Brine Sites in Southwest Texas	188
C. Bowes and D.R. Unger	100
Comparing the Accuracy of Multi-Source Data Integration for Two	
Supervised Image Classification Methods: Maximum Likelihood and	
Artificial Neural Network	189
D.R. Unger and H. Tribby	
Historic Visualization: Sabine River Crossings of Texas	191
J.M. Williams	