

by Dr. Kim D. Coder, Professor University of Georgia, Sept. 2000

Critical Force For Buckling Tree Stems

Tree strength and stiffness can resist significant forces and not fail. A large proportion of this strength lies with the thickness (diameter) of the stem. Stem buckling occurs when an exerted force begins and continues to bend the stem beyond recovery. Prime among the calculable forces in stem resistance to failure is the relative critical force needed to sustain Euler bucking (as opposed to thinwalled buckling which is not treated here). Euler buckling occurs at a critical force which is proportional to the geometric placement and material strength of woody tissues, and inversely proportional to the square of stem height.

The amount of load which can be applied to cause failure by buckling is dependent upon many complex factors and attributes of tree, soil, and environment. This publication will isolate one simple component of stem strength to help tree specialists appreciate tree biomechanics. This publication does not attempt to provide actual tree stem responses to loads and forces under the dynamic conditions in nature.

Table 1 provides a list of relative critical force values needed for Euler buckling to proceed in a stem at various heights and various diameters. These values can help compare critical force as diameter and height increase. For example, in a 15 inch diameter tree which is 40 feet tall, the relative critical force value is 155. Growing twenty feet in height and two (2) inches in diameter represents a relative critical force of 113, or a 27% loss in the critical force needed for initiating buckling. Note that greater heights and diameters are listed than could be normally expected in order to show strength trends.

Figure 1, 2, and 3 all provide graphical examples of how relative critical forces can vary by height and diameter. General principles for critical force-initiated buckling (stem failure) are: large forces are needed to buckle short, large diameter stems; much smaller forces are needed to buckle tall, small diameter stems; for the same diameter stem, relative bucking force is greatly reduced by doubling height (~25% of force needed for 100 feet tall stem compared with a 50 feet tall stem at 20 inches diameter); bigger and shorter stems are stronger, and thinner and taller stems are weaker.

It is clear across a number of mechanical features, there are proportional limits between height growth and diameter growth. Stem locations which do not meet, or are prevented from meeting, structural sustainability at minimum levels, will be weak areas upon which forces are concentrated.

THE UNIVERSITY OF GEORGIA, THE UNITED STATES DEPARTMENT OF AGRICULTURE AND COUNTIES OF THE STATE COOPERATING. THE COOPERATIVE EXTENSION SERVICE OFFERS EDUCATIONAL PROGRAMS, ASSISTANCE AND MATERIALS TO ALL PEOPLE WITHOUT REGARD TO RACE, COLOR, NATIONAL ORIGIN,

AGE, SEX OR HANDICAP STATUS.
A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA.
AN EQUAL OPPORTUNITY/AFFIRMATIVE ACTION ORGANIZATION

Table 1: Relative critical force needed for Euler buckling to proceed in tree stems of a given height (feet) and diameter (inches). Dotted lines are examples from text.

Stem	· · · · · · · · · · · · · · · · · · ·													
Diamt. (in.)	20f	ît 30	40	50	60	70	80	90	100	110	120	130	140	150
4 in. 5	3 7	1 3	0 1	0 1	0	0	0	0 0						
6 7	15 29	7 13	3 7	4	$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	1 2	0 1	0 1	0 1	0 0	0 0	0 0	0 0	0 0
8 9	50 80	22 35	12 20	8 12	8	4 6	3 5	2 3	2 3	1 2	1 2	1 1	1 1	0 1
10	122	54	30	19	13	10	7	6	4	4	3	2	2	2
11 12	179 254	79 113	44 63	28 40	19 28	14 20	11 15	8 12	7 10	5 8	4 7	4 6	3 5	3 4
13 14	350 471	155 209	87 117	56 75	38 52	28 38	21 29	17 23	14 18	11 15	9 13	8 11	7 9	6 8
15	621		155	99	69	50	38	30	24	20	17	14	12	11
16 17	804 	357 4 <u>55</u>	201 256	128 163	89 113	65 83	50 64	39 50	32 40	26 33	22 28	19 24	16 20	14 18
18 19	1,288 1,599	572 710	322 399	206 255	143 177	105 130	80 99	63 78	51 63	42 52	35 44	30 37	26 32	22 28
20	1,963	872	490	314	218	160	122	96	78	64	54	46	40	34
21 22	2,386 2,874	1,060 1,277	596 718	381 459	265 319	194 234	149 179	117 141	95 114	78 95	66 79	56 68	48 58	42 51
23	3,434	1,526	858	549	381	280	214	169	137	113	95	81	70	61
24 25	4,071 4,793	1,809 2,130	1,017 1,198	651 766	452 532	332 391	254 299	201 236	162 191	134 158	113 133	96 113	83 97	72 85
26 27	5,607 6,521	2,492 2,898	1,401 1,630	897 1,043	623 724	457 532	350 407	276 322	224 260	185 215	155 181	132 154	114 133	99 115
28	7,542	3,352	1,885	1,206	838	615	471	372	301	249	209	178	153	134
29 30	8,679 9,940	3,857 4,417	2,169 2,485	1,388 1,590	964 1,104	708 811	542 621	428 490	347 397	286 328	241 276	205 235	177 202	154 176
31	11,333	5,037	2,833	1,813	1,259	925	708	559	453	374	314	268	231	201
32 33	12,867 14,553	5,719 6,468	3,216 3,638	2,058 2,328	1,429 1,617	1,050 1,188	804 909	635 718	514 582	425 481	357 404	304 344	262 297	228 258
34	16,399	7,288	4,099	2,623	1,822	1,338	1,024	809	655	542	455	388	334	291
35	18,415	8,184	4,603	2,946	2,046	1,503	1,150	909	736	608	511	435	375	327
36	20,611 22,999	9,160	5,152	3,297	2,290	1,682	1,288	1,017	824	681	572	487	420	366
37 38	25,588	10,221 11,372	5,749 6,397	3,679 4,094	2,555 2,843	1,877 2,088	1,437 1,599	1,135 1,263	919 1,023	760 845	638 710	544 605	469 522	408 454
39	28,390	12,617	7,097	4,542	3,154	2,317	1,774	1,401	1,135	938	788	671	579	504
40	31,415	13,962	7,853	5,026	3,490	2,564	1,963	1,551	1,256	1,038	872	743	641	558
45 50	50,322 76,698	22,365 34,088	12,580 19,174	8,051 12,271	5,591 8,522	4,107 6,261	3,145 4,793	2,485 3,787	2,012 3,067	1,663 2,535	1,397 2,130	1,191 1,815	1,026 1,565	894 1,363
55	112,294	49,908	28,073	17,967	12,477	9,166	7,018	5,545	4,491	3,119	2,657	2,291	1,996	3,712
60 65	159,042 219,059	70,685 97,359	39,760 54,764	25,446 35,049	17,671 24,339	12,983 17,882	9,940 13,691	7,853 10,817	6,361 8,762	4,417 6,084	3,764 5,184	3,245 4,470	2,827 3,894	5,257 7,241
70		130,954	73,661	47,143	32,738		18,415	14,550	11,785	9,740	8,184	6,973	6,013	5,238
75	388,288	172,572	97,072	62,126	43,143		24,268	19,174	15,531	12,835	10,785	9,190	7,924	6,902
80		223,401	125,663	80,424	55,850	41,033	31,415	24,822	20,106	16,616	13,962	11,897	10,258	8,936
85 90	640,597 805,155		160,149 201,288	102,495 128,824	71,177 89,461		40,037 50,322	31,634 39,760	25,623 32,206	21,176 26,616	17,794 22,365	15,162 19,056	13,073 16,431	11,388 14,313

Figure 1: Stem heights and diameters which have equivalent relative critical forces required to propagate Euler buckling.

(not to scale)

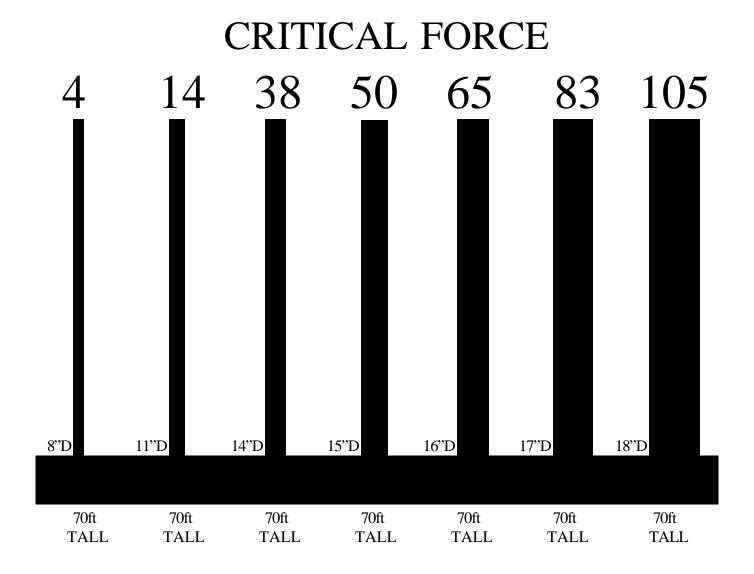


Figure 2: For each stem, with heights all equal to 70 feet and with increasing diameters, the relative critical forces required to propagate Euler buckling are listed.

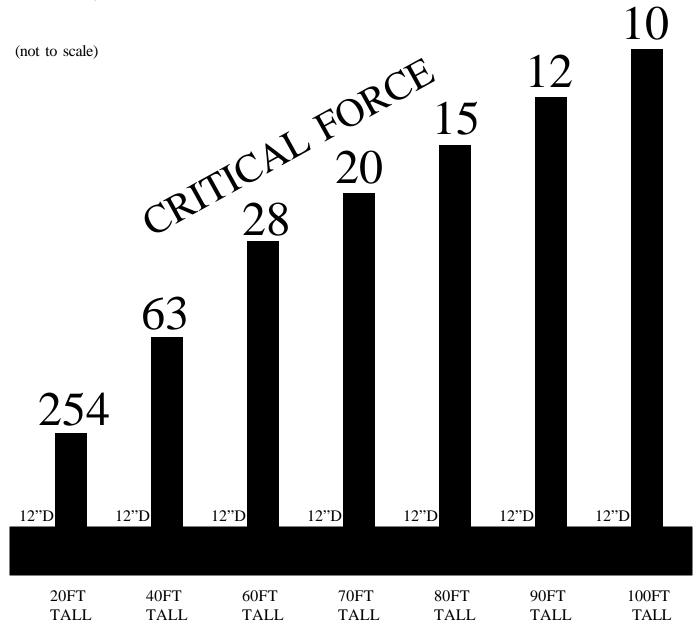


Figure 3: For each stem, with increasing heights and with diameters all equal to 12 inches, the relative critical forces required to propagate Euler buckling are listed.