

Estimating Wind Forces On Tree Crowns

by Dr. Kim D. Coder, Professor University of Georgia, Sept. 2000

Wind and gravity are the two primary forces acting upon tree crowns. The structural resistance to these forces by the tree require complex allocation processes and dedication of limited resources. Assessing the shear scale of both wind and gravity forces, and considering most trees do not usually fall under their own weight, wind forces on the crown are dominant and immense. Resistance to wind forces can be summarrized by measures of crown density, living crown height, and total height of the tree.

This publication will concentrate on theoretical approaches to estimating wind force resistance by open grown tree crowns. The dynamic and complex circumstances of soil, tree, and environment can not be adequately modeled here. Only a few isolated static components will be examined. The purpose of this publication is to allow tree specialists to appreciate tree biomechanics. Figure 1 graphically defines the calculations involved.

This publication contains three tables all derived from the amount of force exerted by the wind, and how an open grown tree resists this force. Force resistance by the tree is based upon bending moments (resistance to bending) in the following tables. Torsional strength was calculated but not presented. Torsional strength (resisting twist) is two times (2X) bending strength in both solid and hollow (closed, centered cavity) stems.

Table 1 presents the pounds of wind force per square feet of crown varying by wind speed (mph - miles per hour) and crown density. Crown density is provided in 10% density classes, where 100% crown density stops and absorbs all wind energy. In a tree with 100% crown density, a 50 mph wind measured on the windward (upwind) side of a tree would be measured as 0 mph on the leeward (downwind) side of the tree. Crown density as used here is actually a wind drag factor across the crown and assumes tree crowns do not reorient with increasing wind velocity. Crown density is a measure of the difference in wind velocity across the crown.

For example in Table 1, a 50 mph wind would be reduced to 35 mph by passing through a tree crown with a 30% crown density -- calculated by: ((up-wind side in mph) x (1 - (crown density)) = (down-wind side in mph). Using Table 1, a 50 mph wind and 30% crown density generates four (4) pounds of force on each square foot of tree crown. (Dotted lines on Table 1 represent standard conditions).

THE UNIVERSITY OF GEORGIA, THE UNITED STATES DEPARTMENT OF AGRICULTURE AND COUNTIES OF THE STATE COOPERATING. THE COOPERATIVE EXTENSION SERVICE OFFERS EDUCATIONAL PROGRAMS, ASSISTANCE AND MATERIALS TO ALL PEOPLE WITHOUT REGARD TO RACE, COLOR, NATIONAL ORIGIN, AGE, SEX OR HANDICAP STATUS. A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA. AN EQUAL OPPORTUNITY/AFFIRMATIVE ACTION ORGANIZATION

UNIVERSITY OF GEORGIA WARNELL SCHOOL OF FOREST RESOURCES EXTENSION PUBLICATION FOR00-16 WEB Site = WWW.FORESTRY.UGA.EDU/WARNELL/SERVICE/LIBRARY Table 2 is the percentage of force resistance remaining in the crown as living crown ratio declines. Living crown ratio is the height of the living crown compared with the total height of the tree. A 50% live crown ratio would be represented by a 100 feet tall tree with a living crown occupying the top 50 feet of the height. Wind forces are concentrated across the living crown and can be considered centered at a point 60% of the distance upward from the bottom of the living crown. Table 2 gives the percent of force remaining in the crown at different crown heights regardless of total tree height. Table 3 presents estimated total pounds of force per square feet varying by living crown ratio and tree height. Note the assumptions made in Figure 1 to calculate these values.

Conclusions

Table 1 suggests that low wind velocities are easily resisted by tree crowns. As wind velocity increases, more pounds of force are deposited upon the crown. If general, tree crown safety factors are in the range of three to five times more resistive strength than average wind conditions require. Increastext continued on top of page 3

Table 1: The amount of wind force in pounds per square feet resisted by tree crowns over various wind speeds in miles per hour (mph) and various crown densities. Dashed lines show standard conditions used in other tables and text. Figure 1 graphically defines wind-crown calculations.

	crown density										
wind speed (mph)	100%	90%	80%	70%	60%	50%	40%	30%	20%	10%	
200 mph	209	188	167	146	125	104	84	63	42	21	
175	160	144	128	112	96	80	64	48	32	16	
150	118	106	94	82	71	59	47	35	24	12	
140	102	92	2 4 82	02 72	61	51		31	2 4 21	10	
130	88	79	02 71	62	53	<u> </u>	35	27	18	9	
120	75	68	60	53	45	38	30	$\frac{27}{23}$	15	8	
110	63	57	51	55 44	38	32	25	19	13	6	
110	05	57	51		50	52	23	17	15	0	
100	52	47	42	37	31	26	21	16	10	5	
90	42	38	34	30	25	21	17	13	9	4	
80	33	30	27	23	20	17	13	10	7	3	
70	26	23	21	18	15	13	10	8	5	2.6	
60	19	17	15	13	11	9	8	6	4	1.9	
								ĺ			
50	13	12	_10	9	8	7	_5		2.6	1.3	
45	11	10	9	7	6	5	4	3	2.1	1.1	
40	8	8	7	6	5	4	3	2.5	1.7	0.8	
35	6	6	5	5	4	3	2.6	1.9	1.3	0.6	
30	5	4	4	3	3	2.4	1.9	1.4	0.9	0.5	
25	3	3	2.6	2.3	2.0	1.6	1.3	1.0	0.7	0.3	
20	2.1	1.9	1.7	1.5	1.3	1.0	0.8	0.6	0.4	0.2	
15	1.2	1.1	0.9	0.8	0.7	0.6	0.5	0.4	0.2	0.1	
10	0.5	0.5	0.4	0.4	0.3	0.3	0.2	0.2	0.1	0.05	
5	0.1	0.1	0.1	0.09	0.08	0.07	0.05	0.04	0.03	0.01	
	(pounds of force / square feet)										

ing wind velocity can quickly overload tree crown structure. Table 1 also suggests that reducing crown density through crown thinning can remove some level of load.

Table 2 suggests that regardless of tree height, different living crown ratios will have a specific percent of force resistance remaining in the crown. Pruning trees up (crown raising) can significantly reduce force on the crown. Table 3 estimates the total force on tree crowns. The less the living crown ratio (the higher above the ground the crown begins) and shorter the tree, the less accumulated force on the crown. The magnitude of forces which wind applies to tree crown is large.

Table 2: The percentage of force resistance remaining in a tree crown as the living crown ratio declines (base of living crown moves higher along stem) for standard conditions over all tree heights. Standard conditions are 30% crown density (drag on wind) and a 50 mph wind velocity.

	Living	Crown	Ratio	(100% = li)	ving crown a	along ei	ntire tree	height)	
100%	90%	80%	70%	60%	50%	40%	30%	20%	10%
100%	96%	91%	84%	76%	67%	56%	44%	31%	16%
Percent of Force Resistance Remaining in Tree Crown									

Table 3: The estimated force (total pounds of force) on tree crowns across various heights in feet and various living crown ratios (total height of living crown / total height of tree) under standard conditions. Standard conditions are 30% crown density (30% drag on wind) and 50 mph wind velocity.

Tree	Living Crown Ratio (100% = living crown along entire tree height)									
(feet)	100%	80%	60%	40%	20%					
20 ft.	2,816	2,553	2,140	1,577	863					
30	9,504	8.617	7.223	5,322	2.914					
40	22,529	20,426	17,122	12,616	6,908					
50	44,002	39,895	33,441	24,641	13,494					
60	76,035	68,939	57,787	42,580	23,317					
70	120,742	109,472	91,763	67,615	37,027					
80	180,233	163,411	136,977	100,930	55,271					
90	256 620	232 669	195 031	143,707	78,697					
100	352,017	319,162	267,533	197,129	107,952					
110	468,535	424,805	356,086	262,379	143,684					
120	608,286	551,513	462,297	340,640	186,541					
130	773,382	701,200	587,770	433,094	237,170					
140 150 160	965,936 1,188,059 1,441,864	875,782 1,077,173 1,307,290	734,111 902,925 1,095,816 (total	540,924 665,313 807,443 I pounds of for	296,220 364,338 442,171 rce on tree)					

Crown Shape Factor (paraboloid) Area =

(2/3 x Crown Width x Crown Height)

60% of Crown Height is Crown Center (Center of Wind Force)

Crown Width = 0.22 x Tree Height

Wind Reduction Across Crown % (Crown Drag on Wind) =

Wind Velocity Leeward Side / Wind Velocity Windward Side Air Density = 0.078 pds/ft^3

Wind Pressure = Crown Area x Force

(Note: No crown reorientation with increasing wind velocity was assumed for calculations.)