

Crown Shape

 Factors \& Volumesby Dr. Kim D. Coder, Professor University of Georgia, Nov. 2000

Many of the models for determining loads and forces in tree structural systems depend upon crown shape. Tree crown shapes are integral to a variety of models because volume estimates, surface area estimates, or various types of two dimensional crown projections are directly related to crown shape. Calculating crown shape in a natural setting under dynamic loads requires continuous changes (over a variety of time and spacial scales) with growth, damage, and applied forces.

Because of varying tree crown shape, reach, extent, and internal positioning of branches and leaf tissues (crown density impacts), mechanic loads and structural resistances are difficult to calculate. Most models published have consolidated all the variation in tree crowns by using calculations for solid geometric objects. Using formulae which represent geometric solids or surfaces help simplify mechanical models. Choice of an appropriate solid object formula to represent tree crown shape remains subject to much debate depending upon tree species, biometric attributes of trees and models involved, and discretion of the researcher.

To assist tree biomechanic specialists to better appreciate crown shapes and calculation means, this publication was developed. This publication uses the standard gradient of tree crown shapes used in forestry, arboriculture, and ecology. Table 1 provides the names and the formulae for a variety of different idealized crown shapes. Note that within the various formulae for crown shape, the only portion which changes is a single decimal multiplier value.

The formulae presented here represent one family of associated shapes or objects. Remember these formulae represent a calculated volume for an idealized shape. There are many different shapes, within the height and diameter constraints of the formulae, which could have the same volume (or the same calculated volume could be contained within many different shapes).

Table 2 is provided to allow comparison of crown shape volumes between different crown shapes, and within a single crown form, varying by crown height and crown diameter. Note these values in Table 2 are approximations and have been rounded for simplicity. Figure 1 helps graphically define idealized tree crown shapes which have the same diameter and height.

Table 1: Tree crown volume estimates for different crown shape models. Shape numbers run from 1-10 with progressively decreasing volumes. Crown shape value is a formula multiplier where a right cylinder is $8 / 8,1 / 1$, or 1.0 , and the rest of the shape formulas are some fraction of a right cylinder's volume. Crown shape formula uses crown diameter and crown height in feet to calculate crown volumes in cubic feet. Crown shape name is a symbolic approximation for visualizing shape based upon solid geometric figures. Figure 1 describes the shapes involved.

shape number	shape value	shape formula	shape name
S1	8/8 (1.0)	$\left(\right.$ Crown Diameter) ${ }^{2} \mathrm{x}$ (Crown Height) x (0.7854)	CYLINDER
S2	$7 / 8$ (0.875)	$\left(\right.$ Crown Diameter) ${ }^{2}$ x (Crown Height) x (0.6872)	ROUNDED-EDGE CYLINDER
S3	3/4 (0.75)	(Crown Diameter) ${ }^{2}$ x (Crown Height) x (0.5891)	ELONGATED SPHEROID
S4	2/3 (0.667)	$\left(\right.$ Crown Diameter) ${ }^{2} \mathrm{x}$ (Crown Height) x (0.5236)	SPHEROID
S5	$5 / 8$ (0.625)	$\left(\right.$ Crown Diameter) ${ }^{2} \mathrm{x}$ (Crown Height) x (0.4909)	EXPANDED PARABOLOID
S6	1/2 (0.5)	$\left(\right.$ Crown Diameter) ${ }^{2} \mathrm{x}$ (Crown Height) x (0.3927)	PARABOLOID
S7	3/8 (0.375)	$\left(\right.$ Crown Diameter) ${ }^{2} \mathrm{x}$ (Crown Height) x (0.2945)	FAT CONE
S8	1/3 (0.333)	$\left(\right.$ Crown Diameter) ${ }^{2} \mathrm{x}$ (Crown Height) x (0.2619)	CONE
S9	1/4 (0.25)	(Crown Diameter) ${ }^{2}$ x (Crown Height) x (0.1964)	NEILOID
S10	1/8 (0.125)	$\left(\right.$ Crown Diameter) ${ }^{2}$ x (Crown Height) x (0.0982)	THIN NEILOID

Table 2: Tree crown volumes in cubic feet by shape factor (formula). Crown volumes are provided across five crown diameters ($20-100$ feet in diameter) and four crown heights ($25-100$ feet in height) to show the calculated volumes arising from different crown shape formulas. Figure 1 presents a graphical definition of crown shapes.

Table 2: (continued from page 3) Tree crown volumes in cubic feet by shape factor.

| crown |
| :--- | :--- | :--- | :--- | :--- |
| diameter |
| (feet) |

Figure 1: Example two-dimensional side view of idealized crown shapes with crown shape factor number and generic name. See Table 1 for construction formulae.
 All shapes are found along a calculation gradient from S1 (multiplier 0.7854) to S 10 (multiplier 0.0982).

WIDEST DISTANCE SIDE-TO-SIDE
$=$ CROWN DIAMETER (D)

LONGEST DISTANCE UP-AND-DOWN
$=$ CROWN HEIGHT (H)
CROSS-SECTION FOR ALL SHAPES IS CIRCULAR

